

EXERCICE 1 5 points

Commun à tous les candidats

On s'intéresse à la population des personnes âgées de plus de 65 ans d'un certain pays en 2006.

Dans cette population:

- 58 % sont des femmes;
- 5 % des personnes sont atteintes d'une maladie incurable appelée maladie $\mathscr A$ et parmi celles-ci les deux tiers sont des femmes.

On choisit au hasard une personne dans cette population.

On note:

F l'évènement : « la personne choisie est une femme » ;

H l'évènement : « la personne choisie est un homme » ;

A l'évènement : « la personne choisie est atteinte de la maladie \mathcal{A} »;

 \overline{A} l'évènement : « la personne choisie n'est pas atteinte de la maladie \mathscr{A} ».

Les résultats seront arrondis au millième.

- 1. a. Donner la probabilité de l'évènement F et celle de l'évènement A. Donner la probabilité de l'évènement F sachant que l'évènement F est réalisé, notée $p_A(F)$.
 - **b.** Définir par une phrase l'évènement $A \cap F$ puis calculer sa probabilité.
 - **c.** Montrer que la probabilité de l'évènement A sachant que F est réalisé est égale à 0,057 à 10^{-3} près.
- **2.** La personne choisie est un homme. Démontrer que la probabilité que cet homme soit atteint de la maladie \mathscr{A} est égale à 0,040 à 10^{-3} près.
- **3.** Peut-on affirmer que, dans ce pays en 2006, dans la population des personnes âgées de plus de 65 ans, une femme risquait davantage de développer la maladie $\mathscr A$ qu'un homme? Justifier.

EXERCICE 2 5 points

Pour les candidats n'ayant pas suivi l'enseignement de spécialité

Cet exercice est composé de deux parties :

- la partie I est un « vrai-faux » sans justification,
- la partie II est un questionnaire à choix multiples avec justification.

PARTIE 1 : Pour chacune des affirmations, recopier sur la copie le numéro de la question et indiquer sans justifier si elle est vraie ou fausse.

Une réponse exacte rapporte 0,5 point, une réponse fausse enlève 0,25 point. L'absence de réponse n'ajoute ni n'enlève aucun point. Si le total des points est négatif, la note attribuée à cette partie est ramenée à zéro.

1.
$$\lim_{x \to +\infty} \frac{2x^2 + 3}{x - 4} = +\infty$$

2. Soit f la fonction définie et dérivable sur l'intervalle $]-\infty$; 3[par

 $f(x) = \frac{2x+1}{x-3}$

On note *C* sa courbe représentative dans le plan muni d'un repère.

La tangente à la courbe C au point d'abscisse 2 a pour équation y = -6x + 9.

3. Soit f la fonction définie et dérivable sur l'ensemble des nombres réels \mathbb{R} par $f(x) = \ln(x^2 + 5)$.

Le nombre dérivé de la fonction f en 1 est $\frac{1}{3}$.

4. Soit f la fonction définie sur l'ensemble des nombres réels \mathbb{R} par f(x) = 2x + 1.

On définit la fonction g par $g(x) = \ln [f(x)]$.

On affirme que la fonction g est définie sur l'intervalle $\left[-\frac{1}{2}; +\infty\right[$.

PARTIE II : Pour chacune des questions, une seule réponse parmi les trois est exacte. Indiquer sur la copie le numéro de la question et la réponse choisie correspondante puis justifier cette réponse.

Chaque réponse exacte et justifiée rapportera 1 point.

Toute trace de recherche. même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

1. Si pour tout nombre réel x de l'intervalle $[0; +\infty[$, $e^{-x} \le f(x) \le \frac{1}{x+1}$, alors la limite en $+\infty$ de $f(x)$ est :	$-\infty$	0	+∞
2. $\frac{\ln(e^2)}{\ln 16}$ est égal à :	$2\ln\left(\frac{e}{4}\right)$	$\frac{1}{2\ln 2}$	2lne-ln 16
3. $\int_{\ln 2}^{\ln 3} \frac{e^x}{(e^x + 1)^2} dx$ est égale à :	$-\frac{1}{12}$	$\ln\left(\frac{4}{3}\right)$	1 12

EXERCICE 2 5 points Pour les candidats ayant suivi l'enseignement de spécialité

Pour les candidats ayant suivi l'enseignement de specialité

Pour chacune des questions suivantes, une seule des réponses parmi les trois proposées est exacte.

Le candidat indiquera sur sa copie, le numéro de la question et la lettre correspondant à la question choisie.

Partie 1 : Aucune justification n'est demandée

Une bonne réponse rapporte 0,5 point. Une mauvaise réponse ou l'absence de réponse n'apporte ni n'enlève aucun point.

Énoncé	Réponse A	Réponse B	Réponse C						
1. Dans l'espace muni d'un	1. a. La surface (<i>S</i>) passe par le point de coordonnées :								
repère orthonormal	(1;-1;4)	(-1; -1; 0)	(1; -1; 2)						
$\left(0; \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k}\right)$, on désigne par	1. b. La courbe de n	1. b. La courbe de niveau de cote 3 de la surface (<i>S</i>) est :							
(S) l'ensemble des points M	une droite	une parabole	une hyperbole						
de coordonnées $(x; y; z)$ tels	1. c. Le plan (P) :	1. c. Le plan (P) :							
que $z = 2x - y^2 + 1$ et par (P)	contient le point	est parallèle au	est parallèle à						
le plan d'équation	de coordonnées	plan $(O; \vec{i}, \vec{j})$	l'axe $(O; \vec{k})$						
2x + 3y - 5 = 0.	(0;0;-5)	1 ()	()						
2. Soient G le graphe probabiliste ci-dessous et M la matrice de transition associée à ce									
graphe, les sommets étant rangés dans l'ordre alphabétique.									
A 0,7 B 0,2	(0,23 0,77)	(0,7 0,3)	(0,3 0,8)						
0,3 0,8	$M^2 = \begin{pmatrix} 0,23 & 0,77 \\ 0,22 & 0,78 \end{pmatrix}$	$M = \begin{pmatrix} 0,7 & 0,3 \\ 0,8 & 0,2 \end{pmatrix}$	$M = \begin{pmatrix} 0, 3 & 0, 8 \\ 0, 2 & 0, 7 \end{pmatrix}$						

Partie II: Recopier pour chaque question la réponse exacte et justifier celle-ci.

Chaque réponse exacte et bien justifiée rapportera 1 point.

Toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

1. On considère le	a.	Le graphe H	Le graphe H	Le graphe H
graphe $H:_{\mathbf{p}}$		admet une	admet un	est complet.
D C		chaîne	cycle	
		eulérienne.	eulérien.	
	b.	Le nombre	Le graphe	Le graphe
$A \leftarrow \rightarrow D$		chromatique	admet un	n'est pas
		du graphe est	sous-graphe	connexe.
F.		3.	complet	
On peut affirmer que :			d'ordre 4.	
2. On définit la suite (u_n)		La suite (v_n)	La suite (v_n)	La suite (u_n)
par $u_0 = 4$ et, pour tout en-		est	est	est
tier naturel n , par		arithmétique.	géométrique.	géométrique.
$u_{n+1} = -0.4u_n + 1750$. On				
définit la suite (v_n) pour				
tout entier naturel n par				
$v_n = u_n - 1250$. Alors:				

EXERCICE 3 Commun à tous les candidats

5 points

Partie A: Étude d'une fonction

On considère les fonctions f, g et h définies et dérivables pour tout nombre réel x de l'intervalle [4; 6] par :

$$f(x) = 100(e^x - 45)$$
, $g(x) = 10^6 e^{-x}$ et $h(x) = g(x) - f(x)$.

On note h' la fonction dérivée de la fonction h sur l'intervalle [4; 6].

Résolution de l'équation h(x) = 0.

- **1. a.** Démontrer que la fonction h est strictement décroissante sur l'intervalle [4;6].
 - **b.** Dresser le tableau de variations de la fonction h.
 - **c.** Justifier que l'équation h(x) = 0 admet une solution unique α sur l'intervalle [4; 6].

2. a. Compléter le tableau de valeurs donné en annexe (les résultats seront arrondis à la centaine la plus proche).

- **b.** Sur la figure fournie en annexe, tracer la courbe représentative \mathcal{C}_h de la fonction h dans le plan muni d'un repère orthogonal.
- **c.** Placer α sur ce graphique et en donner un encadrement d'amplitude 10^{-1} .

Dans la suite de l'exercice, on admet que la valeur exacte du nombre réel α est égale à $3\ln 5$ où \ln désigne la fonction logarithme népérien.

Partie B: Application économique

Les fonctions f et g définies dans la partie A modélisent respectivement l'offre et la demande d'un produit de prix unitaire x, compris entre 4 et 6 euros :

- f(x) est la quantité, exprimée en kilogrammes, que les producteurs sont prêts à vendre au prix unitaire x;
- g(x) la quantité, exprimée en kilogrammes, que les consommateurs sont prêts à acheter au prix unitaire x.

On appelle prix unitaire d'équilibre du marché la valeur de x pour laquelle l'offre est égale à la demande.

- Quel est, exprimé au centime d'euro près, le prix unitaire d'équilibre du marché? Justifier.
- **2.** Quelle quantité de produit, exprimée en kilogrammes, correspond à ce prix unitaire d'équilibre?

EXERCICE 4 5 points

Commun à tous les candidats

L'évolution de la population de bouquetins des Alpes, dans le Parc National de la Vanoise depuis sa création, est donnée par le tableau suivant :

On note X_i l'année, l'indice i étant un nombre entier variant de 1 à 8.

On note x_i le rang de l'année par rapport à 1960 : $x_i = X_i - 1960$.

On désigne par y_i le nombre de bouquetins l'année X_i .

Année X_i	1963	1976	1986	1993	1997	1998	2003	2005
Rang de l'année x_i	3	16	26	33	37	38	43	45
Nombre de bouquetins y_i	65	500	700	1 250	1 453	1800	2066	2568

(Source: http://www.bouquetin-des-alpes.org/populations/vanoiselvanoise.htm)

On se place dans le plan muni d'un repère orthogonal d'unités graphiques :

- 5 cm pour 10 années sur l'axe des abscisses,
- 1 cm pour 200 bouquetins sur l'axe des ordonnées.

On note M_i le point de coordonnées $(x_i; y_i)$.

Ainsi M_1 a pour coordonnées (3; 65) et M_3 a pour coordonnées (26; 700).

- 1. En disposant la feuille de papier millimétrée dans le sens de la longueur pour les abscisses, représenter le nuage des huit points $M_1, M_2, M_3, M_4, M_5, M_6, M_7$ et M_8 .
- **2.** Dans cette question, on ne s'intéresse qu'au sous-nuage formé par les six points M_3 , M_4 , M_5 , M_6 , M_7 et M_8 .

On admet qu'un ajustement affine de ce sous-nuage est justifié et que la droite d'ajustement affine obtenue par la méthode des moindres carrés pour ce sous-nuage a pour équation y = 92,6x - 1787.

- **a.** Tracer cette droite *D* sur le graphique précédent.
- **b.** Estimer, avec cet ajustement affine, le nombre de bouquetins que l'on peut prévoir dans le Parc National de la Vanoise en 2010.
- **3.** Dans cette question, on s'intéresse au nuage constitué des huit points $M_1, M_2, M_3, M_4, M_5, M_6, M_7$ et M_8 .

L'allure de ce nuage permet d'envisager un ajustement exponentiel de la série.

- **a.** On pose $z_i = \ln y_i$. Déterminer une équation de la droite d'ajustement affine de z en x par la méthode des moindres carrés. Les coefficients seront arrondis au centième
- **b.** En déduire une relation entre y et x de la forme $y = Ae^{Bx}$, A étant arrondi à l'unité et B au centième.
- **c.** En utilisant cette modélisation, calculer le nombre de bouquetins que l'on peut prévoir en 2010 dans le Parc.
- d. Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.
 En utilisant cette modélisation, à partir de quelle année la population de bouquetins dépassera-t-elle 5 000 unités?

5

Annexe de l'exercice 3 à rendre avec la copie

Tableau à compléter

х	4	4,2	4,4	4,6	4,8	5	5,2	5,4	5,6	5,8	6
h(x)	17 400					-3600	-8100			-25500	-33400

Graphique à compléter

