Exercice n°3 (5 points) – Commun à tous les candidats.

Dans un stand de tir, un tireur effectue des tirs successifs pour atteindre plusieurs cibles.

La probabilité que la première cible soit atteinte est $\frac{1}{2}$.

Lorsqu'une cible est atteinte, la probabilité que la suivante le soit est $\frac{3}{4}$.

Lorsqu'une cible n'est pas atteinte, la probabilité que la suivante soit atteinte est $\frac{1}{2}$.

On note, pour tout entier naturel n non nul:

 A_n l'évènement : « la n-ième cible est atteinte ».

 A_n l'évènement : « la n-ième cible n'est pas atteinte.

 \boldsymbol{a}_n la probabilité de l'évènement \boldsymbol{A}_n , \boldsymbol{b}_n la probabilité de l'évènement \boldsymbol{A}_n .

1. Donner a_1 et b_1 .

Calculer a_2 et b_2 . On pourra utiliser un arbre pondéré.

- **2.** Montrer que, pour tout $n \in \mathbb{N}$, n > 1: $a_{n+1} = \frac{3}{4}a_n + \frac{1}{2}b_n$ et $a_{n+1} = \frac{1}{4}a_n + \frac{1}{2}$.
- 3. Soit (U_n) la suite définie pour tout entier naturel n non nul, par $U_n = a_n \frac{2}{3}$
- a. Montrer que la suite (U_n) est une suite géométrique.

On précisera la raison et le premier terme U_1 .

- **b.** En déduire l'expression de U_n en fonction de n, puis l'expression de a_n en fonction de n.
- **c.** Déterminer la limite de la suite (a_n) .
- **d.** Déterminer le plus petit entier naturel n tel que : $a_n > 0,6665$.