Exercice 1 (6 points)

Les deux parties de cet exercice sont indépendantes.

Partie A:

On considère l'équation différentielle (E) : $y' + y = e^{-x}$.

- 1. Montrer que la fonction u définie sur l'ensemble des nombres réels \mathbb{R} par $u(x) = xe^{-x}$. est une solution de l'équation différentielle (E).
- **2.** On considère l'équation différentielle (E'): y' + y = 0. Résoudre l'équation différentielle (E').
- **3.** Soit v une fonction définie et dérivable sur \mathbb{R} .

Montrer que la fonction v est une solution de l'équation différentielle (E) si et seulement si la fonction v-u est solution de l'équation différentielle (E').

- 4. En déduire toutes les solutions de l'équation différentielle (E).
- 5. Déterminer l'unique solution g de l'équation différentielle (E) telle que g(0) = 2.

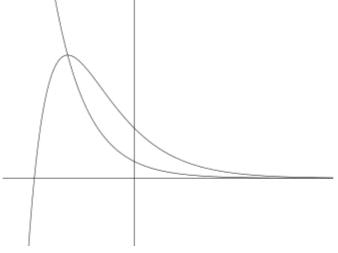
Partie B:

On considère la fonction f_k définie sur l'ensemble \mathbb{R} des nombres réels par $f_k(x) = (x+k)e^{-x}$, où k est un nombre réel donné.

On note C_k la courbe représentative de la fonction f_k dans un repère orthogonal.

- **1.** Montrer que la fonction f_k admet un maximum en x = 1-k.
- **2.** On note M_k le point de la courbe C_k d'abscisse 1-k. Montrer que le point M_k appartient à la courbe Γ d'équation $y = e^{-x}$,.

3. Sur le graphique ci-dessous le repère est orthogonal mais l'unité sur l'axe des abscisses et sur l'axe des ordonnées ainsi que les noms des courbes n'apparaissent pas.



Sur ce graphique, on a tracé deux courbes :

- la courbe Γ d'équation $y = e^{-x}$;
- la courbe C_k d'équation $y = (x+k)e^{-x}$ pour un certain nombre réel k donné.
- a. Identifier les courbes et les nommer.
- **b.** En expliquant la démarche utilisée, déterminer la valeur du nombre réel k correspondante ainsi que l'unité graphique sur chacun des axes.
- 4. À l'aide d'une intégration par parties, calculer $\int_0^2 (x+2)e^{-x}dx$. Donner une interprétation graphique de cette intégrale.