Exercice 3

- 1) Soit g la fonction définie pour tout $x \in \mathbb{R}$ par $g(x) = x^3 3x 3$.
 - **a.** Étudier le sens de variation de g sur \mathbb{R} .
 - **b.** Démontrer que l'équation g(x) = 0 admet dans \mathbb{R} une unique solution, que l'on note α . Donner un encadrement de largeur 10^{-2} de α .
 - c. Déterminer le signe de g sur \mathbb{R} .
- 2) Soit f la fonction définie pour tout $x \in]1; +\infty[$ par

$$f(x) = \frac{2x^3 + 3}{x^2 - 1}$$

- **a.** i. Démontrer que le signe de f'(x) est le même que le signe de g(x) pour tout $x \in]1; +\infty[$.
 - ii. En déduire le sens de variation de f sur $]1; +\infty[$.
 - iii. En utilisant la définition de α , démontrer que $f(\alpha) = 3\alpha$. En déduire un encadrement de $f(\alpha)$.
- **b.** i. Démontrer que, pour tout $x \in]1; +\infty[$,

$$f(x) = 2x + \frac{2x+3}{x^2 - 1}$$

- ii. En déduire que la droite d'équation y = 2x est une asymptote à la courbe représentant f et étudier la position de \mathscr{C}_f par rapport à cette asymptote.
- iii. Démontrer que \mathscr{C}_f admet une autre asymptote.